5 Hot Swimming Topics for Elite Swimmers

 In altitude training, article, Biomechanics, interval training, Starts, Strength and Conditioning, Tiago Barbosa, Turns, Uncategorized, warm-up

As a take home message:

  1. Some of the hot topics for elite swimmers are shared in this piece
  2. I will elaborate on what Science tell us on those topics and what we have yet to learn
  3. For further reading, I will share a few papers and interviews with leading researchers

We are on the road to two major international competitions: Kazan 2015 and Rio 2016. Everybody is looking forward for both competitions. Those that work on the backstage, such as analysts and researchers, hopefully are experienced, as hot topics can diverge training plans, sometimes for the better, sometimes for the worst.

Here you will find five selected hot topics, based on my personal opinion, that several coaches and elite swimmers have been seeking advice. You are most welcome to add more topics on the bottom of this piece. Please, be my guest.

The piece is structured in a not-too-wordy FAQ style:

  1. What do we know so far? I.e., what is the solid scientific knowledge on the topic and the take home message;
  2. What we don’t know yet? I.e., what are the gaps that we still find in the Science, the grey zone, or the limitations reported by the researchers;
  3. Where do I find more details on this? You can have deeper insight on these topics referring to selected research papers or interviews with leading researchers.

And without further ado, the selected topics are……

5 Hot Swimming Topics for Elite Swimmers

  1. High-intensity (interval) training & Ultra-short race-pace training

What do we know so far?

We do know that for low-tier swimmers, any training program is effective. Can be HI(I)T or any other program, including MICE (acronym

High Intensity Swimming Training

for “moderate-intensity continuous exercise”).

HI(I)T is on one end of the spectrum (High-intensity; low-volume) and MICE on the opposite end (Low-intensity; high-volume). USRPT is considered by some people as an extension of HI(I)T although including some extra features. We also find “mixed” programs with different Hi-Lo combinations of volume and intensity.

Mid-tier swimmers show the same performance enhancement regardless of the program being HI(I)T or MICE. Hence, HI(I)T can be considered as more efficient because they get the same outcome with lower physical and psychological stress.

What we don’t know yet?

We find anecdotal reports and claims that a few elite swimmers showed improvements or delivered good performances after a HI(I)T/USRPT program.

We don’t have solid scientific evidence that HI(I)T/USRPT is more or less effective in high-performance swimmers though. I.e., there is not sufficient evidence to endorse or discontinue HI(I)T/USRPT in elite swimmers.

Nevertheless, I am wondering if world-class coaches, at some point of the periodization program, include in their training sessions some of the HI(I)T concepts.

Where do I find more details on this?

Interviews to leading researchers on the topic can be found here and here.

One research paper can be retrieved here.

  1. Altitude

What do we know so far?

An altitude training camp should take roughly 4 weeks. The best times are posted 2-4 weeks after returning to sea level.

On the first week at sea level, performance might even impair. So re-acclimatization is a good moment for tapering before major competitions.

The duration of this recovery seems to be dependent on the event to be raced and individual characteristics of the swimmer.

Altitude training is related to the hypoxia effect, but also the fact of swimmers and coaches are completely focused on the training round the clock, with no need to juggle between different commitments.

Most of the times these camps are held at venues where swimmers can easily approach support staff (e.g., biomechanists, physiologists, Mireia Belmonte VO2 swimming test Altitude Trainingnutritionists, physical therapists, etc.) to be monitored, seeking their advice and thoughts (seems to improve performance at least by 3%).

What we don’t know yet?

There is an individual response to altitude, hence swimmers that are low-responders should be flagged beforehand.

The effect of intermediate- v high-altitude training is still a little bit controversial. I.e., what is the minimum altitude needed?

A lot of research will be done on the different combinations of Hi and Lo regimens.

The nocebo and placebo effects of being part on this kind of training camps is still to be studied.

Where do I find more details on this?

The interview to a leading researcher on the topic can be found here.

One research paper can be retrieved here.

  1. Warm-up

What do we know so far?

Active warm-up has a positive effect on the swimmer’s performance. Bigger effects were found notably for middle- and long-distance (i.e. 200m onwards) than for sprint events.

Pre-race dry-land stretching drills are a common practice as a complement to the in-water warm-up; despite no effects preventing injuries or enhancing the performance. Clarification: I’m talking about stretching before the race and not about a well-designed program over time to enhance flexibility to an optimal range of motion.

The in-water warm-up should last for 15–25 min, including a moderate-intensity set, another of specific drills focusing also on the stroke efficiency, a set with reps at the race pace, starts and turns.

For the time-lag between the in-water warm-up and the race, passive warm-up should be considered.

What we don’t know yet?

The optimal design (e.g., duration, volume, intensity, type of drills and recovery period) according to the event to be raced is not yet fully understood.

Little is known on the effect of different passive warm-up strategies, although none should rise the body temperature above 39 degrees Celsius, otherwise performance might impair.

Where do I find more details on this?

The interview to a leading researcher on the topic: still to come. Stay tuned.

One research paper can be retrieved here.

  1. Strength & conditioning

What do we know so far?

A S&C program concurrent to the in-water training helps to prevent injuries and enhance the performance.

A S&C coach should also monitor anthropometric features and sometimes a preliminary assessment of the body posture and limbs’ alignments. However, physiotherapists can run more comprehensive clinical tests.

The program must be coupled with a proper diet according to the goals to be achieved (i.e. swimmer should refer to a nutritionist).12th FINA World Swimming Championships (25m) - Day Three

S&C can help when the swimmer pushes solid bodies (i.e. block-start; wall-turns) being explosive power a major determinant.

Performance can also be improved while he pulls a fluid body (i.e. water-swim strokes).

Dryland S&C does not have a direct effect on the performance. The earlier one will have an influence on specific in-water parameters and the later on the performance.

As rule of thumb, routines should change every 3-4 weeks (i.e., mesocycle or block) and training loads adjusted to remain effective and avoid injuries.

What we don’t know yet?

The challenge though is the transfer of dry-land strength & power to water and make the best use of it swimming, turning and starting.

More reliable in-water measuring techniques could be developed in the new future. E.g., handgrip testing is not specific enough and tethered swim has some hydrodynamic limitations. Obviously, these tests also have some pros, but I won’t elaborate on that today.

One concern that we cannot rule out is how to build-up power (that is based on maximal strength) avoiding the significant increase of body surface area and weight that affects drag force, buoyancy and underwater torque.

Should the S&C session be before or after the in-water training?

Where do I find more details on this?

The interview to a leading researcher on the topic can be found here.

One research paper can be retrieved here and here.

  1. Starts & turns

What do we know so far?Doha 2014 Dive

Starts plus turns can account up to 50% in a sprint.

Turns can represent up to 30% of the race time in middle- and long-distance events.

Streamline gliding and dolphin kicks are important phases in both race moments.

Over the start, underwater phase (i.e. gliding and dolphin kick) depends upon above-water phases (i.e., take-off horizontal velocity and optimal flight trajectory).

What we don’t know yet?

The body of knowledge on the start seems to be more solid and consistent than for the turns.

The big challenge for the swimmer is to understand when to stop gliding and begin the dolphin kicks, stop the kicking and start or resume the swim stroke.

Where do I find more details on this?

The interview to a leading researcher on the topic can be found here and here.

One research paper can be retrieved here.

By Tiago M. Barbosa PhD degree recipient in Sport Sciences and faculty at the Nanyang Technological University, Singapore

The post 5 Hot Swimming Topics for Elite Swimmers appeared first on Swimming Science.

Recent Posts
Contact Us

We're not around right now. But you can send us an email and we'll get back to you, asap.

Not readable? Change text. captcha txt