4 Fundamental Shoulder Exercises for Swimmers

Fundamental shoulder strengthening exercises for competitive swimmers

Written by Behnam Liaghat, recognized specialist by the International Federation of Sports Physical Therapy, based in Denmark at the University of Southern Denmark. Email: bliaghat@health.sdu.dk

Following my recent blog about identifying joint hypermobility in swimmers, in this blog I will go through some of the top shoulder exercises for the competitive or elite swimmer to develop fundamental strength and neuromuscular control of the rotator cuff and scapular stabilizers.

In our recent research about young competitive swimmers with joint hypermobility (Liaghat et al., 2018), we found that swimmers with inherent shoulder joint hypermobility displayed reduced internal rotation strength and a tendency to poor activation of the scapular muscles. Another interesting finding was that swimmers with joint hypermobility not only display reduced absolute internal rotation strength, but these swimmers are weaker through the entire range of shoulder rotation. The suggested dry-land exercises in this blog can be designed to be beneficial for both hypermobile and non-hypermobile swimmers with few adjustments in range of motion, i.e. by increasing shoulder rotation to be as close as possible to the individual end range.

What are the benefits?

The four exercises specifically aim at improving shoulder retraction (refers to moving the scapula towards the spine), internal rotation and external rotations strength. To avoid injuries, it is important to target muscles on both sides of the shoulder to achieve a balanced intermuscular function. This is the rationale for including exercises for both internal and external rotation movements. Adequate strength in these movements has, besides injury prevention purposes, a positive effect on swimming stroke performance.

General guidelines

Some general guidelines for these exercises include performing them without producing any pain or discomfort and slowly through the entire range (approximately 6-8 seconds per repetition) to engage all important muscles. As there are no golden standard number of repetitions, you may want your swimmers to start with 3 x 30 seconds for the first 2-4 weeks and then move on to 3 x 8-12 repetitions with heavier resistance. Depending on the load applied and experienced level of muscle soreness, the exercises can be performed 3-5 times weekly. Make sure your swimmers breathe in a relaxed manner and engage the whole kinetic chain in all exercises.

When introducing these exercises to your swimmers, be certain that they can control the shoulder so excessive movement of the tip of the shoulder in either upward (towards the ear), backward or forward directions is avoided. In principle, reducing resistance and/or decreasing the range of movement may be applied to increase quality of shoulder control.

Fig. 1. Infraspinatus muscle on the posterior side of the scapula http://c1healthcentre.co.uk/one-of-our-top-5-reasons-you-have-arm-pain-infraspinatus-muscle-problems/

Active release of muscles before you start

Before instructing swimmers in performing these exercises, it is recommended to do some active release of the posterior rotator cuff muscles by standing against a wall with the arms perpendicular to the trunk and putting a pressure to the mid-point of the scapula with a lacrosse ball to target the infraspinatus area (Fig. 1). From here the swimmer can simply roll on the ball and add a shoulder external and internal rotation movement for up to two minutes to release tight and sore muscles (Fig. 2 A-C). The active self-release can be performed in supine for adding more pressure.

Fig. 2 A-C. The Danish swimmer Matilde Lerche Schrøder showing an active release of the posterior rotator cuff muscles.

Now let us move on to the top dry-land exercises for fundamental shoulder strength

 

Exercise 1: Prone 1-arm diagonal lift

Either lie on the floor or on a gym ball supporting with your feet and one arm. Apply resistance with an elastic band. Slightly retract and depress your shoulder before lifting your arm with a 45 degrees angle away from the trunk´s midline. While lifting the arm, a maximum external rotation is performed in the arm so the thumb points towards the ceiling.

Level down by lifting the arm perpendicular to the trunk’s midline.

Level up by adding a back extension in the movement or lifting the opposite leg.

 

Exercise 2: Supine internal rotation 1

Either lie on the floor or on a gym ball supporting with your feet. Apply resistance with an elastic band. Slightly retract and depress your shoulder before turning one arm at a time internally as far as possible without losing shoulder control (e.g. protracting the shoulder towards the ceiling).

Level up by adding oscillation (fast movements back and forth) through the movement.

 

Exercise 3: Supine internal rotation 2

Description: Either lie on the floor or on a gym ball supporting with your feet. Apply resistance with dumbbells. Slightly retract and depress your shoulder before slowly turning one arm at a time externally in cranial direction and then back to vertical position in the underarm without losing shoulder control (e.g. avoid pushing the shoulder towards the ceiling).

Level up by adding more load and increasing range of external rotation.

 

Exercise 4: Prone external rotation

Lie on a gym ball supporting with your feet and one arm. Apply resistance with a dumbbell. Slightly retract and depress your shoulder before externally rotation your arm with the upper arm perpendicular to the trunk.

Level up by adding more load and increasing range of external rotation.

 

Every swimming coach should be familiar with these top shoulder exercises and include them in some content as part of the dry-land routines for injury prevention and for enhancing swimming stroke performance.

 

A special thanks to the Danish swimmers Matilde Lerche Schrøder and Line Virkelyst Johansen for giving their photo consents.

Resource:

Liaghat, B., Juul-Kristensen, B., Frydendal, T., Marie Larsen, C., Søgaard, K., & Ilkka Tapio Salo, A. (2018). Competitive swimmers with hypermobility have strength and fatigue deficits in shoulder medial rotation. Journal of Electromyography & Kinesiology, 39, 1-7. DOI: 10.1016/j.jelekin.2018.01.003

Download link: https://authors.elsevier.com/a/1WU8g3kurobLDS

Dealing with hypermobility in swimmers

Written by Behnam Liaghat, recognized specialist by the International Federation of Sports Physical Therapy, based in Denmark at the University of Southern Denmark.

With hypermobility, it is really a balance for the swimmer between taking advantage of the condition by reducing drag and avoiding excessive motion that may potentially damage the joint. I propose that you may easily acquire the knowledge to test many of your swimmers for generalized joint hypermobility, including shoulder hypermobility, within 1-2 minutes.

In our recent research study on young competitive swimmers, the main findings were that healthy swimmers with hypermobility in the shoulder had a decreased strength and a larger fatigue development. In addition, more experimental data indicated a poorer stability of the shoulder blade. As a swimming coach, you can prescribe exercises to target these deficits and help your swimmers take advantage of their joint hypermobility. Generalized joint hypermobility is evaluated with the 9-point Beighton scale, which requires the performance of five maneuvers, four passive bilateral and one active unilateral performance:

  1. Passive dorsiflexion and hyperextension of the fifth MCP joint beyond 90°
  2. Passive apposition of the thumb to the flexor aspect of the forearm
  3. Hyperextension of the elbow beyond 10°
  4. hyperextension of the knee beyond 10°
  5. Active forward flexion of the trunk with the knees fully extended so that the palms of the hands rest flat on the floor

    Image credit: Clinical Examination in Rhuemetology, Michael Doherty and John Doherty (Mosby, 1992)

Each positive test scores one point, with cut-off values of more than 5/9 being indicative of the presence of generalized joint hypermobility. These cut-off values may vary, and some authors suggest lower cut-off values (e.g. 4/9) for males.

Since the shoulder is not represented in the Beighton scale, you may use a shoulder external rotation (positive score more than 90°) with the upper arm in neutral along the side of the body.

Image credit: Frederick A. Matsen III, M.D., UW Medicine, Orthopaedics and Sports Medicine

In case further investigation is required of the musculoskeletal condition of the swimmer or in case the swimmer experiences pain, please refer to a sports physiotherapist, who can perform additional tests and examination.

For more detail on this topic, please read the freely available research paper by Liaghat et al. (2018): “Competitive swimmers with hypermobility have strength and fatigue deficits in shoulder medial rotation”. https://authors.elsevier.com/a/1WU8g3kurobLDS

Contact the author directly via email: bliaghat@health.sdu.dk 

The Importance of Proprioception Training

Below is an interview I had with Dr. José Inácio. Dr. José Inácio is an expert on the importance of proprioception and how strength training influences proprioception. Remember, strength training isn’t solely about improving swimming speed, but injury prevention and health. This was one of my main points in Dryland for SwimmersWe also have to remember there is a lot left to uncover about strength training. As Dr. Inácio points out, it may improve proprioception, but there is a plethora of other items it may influence as well. I wrote about his study about the effect of strength training on shoulder proprioception as well as how proprioception doesn’t improve performance. I hope you enjoy this interview and if you have any questions, please post them in the comments. Thanks again for reading.

1. Please introduce yourself to the readers (how you started in the profession, Strength Training and Proprioceptioneducation, credentials, experience, etc.).

I am graduated in Physical Education and have worked as a Strength Trainer and Conditioning at Brazilian National Volleyball in the Olympics games in Atlanta, Sydney, Athens, Beijing and London beyond 3 latest World Championships. I am currently a member of the committee of coaches of the International Volleyball Federation as well as Director of the Neuromuscular Research Laboratory (Pneuro) at National Institute of Traumatology an Orthopedic (INTO) and Coordinator of the of Biomechanics laboratory of the Olympic Committee of Brazil.

2. You recently published an article on strengthening and shoulder proprioception. Why is proprioception training important for athletes?

A decreased proprioception was seen as a risk factor for injuries. Besides, the improvement of proprioception can help to  develop the sports techniques.

3. What did your study look at?

Our research aims to analyze the impact of the effort intensity strength proprioception training.

4. How did you choose your methods and various training groups?

The method we set for the intensity of effort is based on the standard position of the ACSM and assume the replacement of sense as joint proprioception measure to be widely adopted by the scientific community.

5. What were the results of your study?Weekly Swimming Round-up

Our results indicate that resistance training results in benefits on proprioception which can be optimized when applied through uniform intensity in the muscular structures surrounding a joint.

6. What were the practical implications for coaches and swimmers from your study?

We believe that in sport in general muscle strength is essential and in the case of swimming the joint position sense of the shoulder as proprioceptive approach contributes to more control into the laps of different styles in the sport.

7. Do you think the results would be different if you had older, elite or untrained people?

At Pneuro we have researched the relationship between proprioception and muscle strength with different populations and we observed that this pattern is repeated but with different proportions.

8. Are there any other ways to train shoulder proprioception?

The training of sports techniques are also proprioception training and that can be optimized by training muscle strength.

9. What else is unknown about proprioception training?

We are initiating research projects to understand how it behaves the reconstruction of the anterior cruciate ligament in the knee proprioceptive performance.

10. Who is doing the most interesting research currently in your field? What are they doing?

Scott Lephart, Roger Enoka, and Dylan Morrissey. They are producing knowledge about proprioception , neuromuscular fadigue , and reduction procedures of the risk of injury, respectively.

11. What makes your research different from others?

We are contributing to the research that correlates strength and proprioception through intensity of effort control in muscle strength training program.

12. Which teachers have most influenced your research?

Scott Lephart through its vast scientific literature on the sensorimotor system.

13. What research or projects are you currently working on or should we look from you in the future?

We are beginning the study of muscle strength programs to delay knee arthroplasty in patients with surgical indication in the age group of 50-60 years old.

The Importance of Proprioceptive Training

Proprioception – taking a balanced approach to sport

When it comes to sport performance, power, strength and endurance can only take you so far. Whether you’re a footballer dribbling the ball, a gymnast on the bars, or a rugby player diving for the line while fending off tackles, balance is absolutely critical for performance. John Shepherd takes a look at how balance and proprioceptive training and the mechanisms that lie behind this skill can be improved.

Balance in sport involves a complex interplay between numerous factors. A number of these are conscious – such as deciding to move a limb to prevent yourself falling at the same time as performing a skill eg a basketball shot – while many more are unconscious. The unconscious element involves the ‘use’ of in-built sensory mechanisms and programmed responses. This is known as ‘proprioception’. Proprioception has been called the ‘sixth sense’ and is basically a mechanism (or, more accurately, a series of mechanisms) that keeps track and control of muscle tensions and movement in the body.

When you consciously make movements or are subjected to external forces, your muscles, ligaments and joints will be making their own ‘judgments’, based on the information that they receive from their own sources. These judgments are then used to invoke mechanisms to control movement (more about this later). These mechanisms are known as sensorimotor processes, and scientists have been investigating how the senses consciously and subconsciously react with one another to control movement (known as sensorimotor research). Sports scientists now believe that sensorimotor ability and proprioception can be enhanced by specific practices.

Mechanics of proprioception

Proprioception is achieved through muscles, ligaments and joint actions using messages that are continuously sent through the central nervous system (CNS). The CNS then relays information to the rest of the body literally ‘telling’ it how to react and with what amount of tension/action. Some of these instructions go to the brain, where more often than not they are acted on unconsciously, whilst others go to the spinal cord, where they are acted on automatically.

Proprioceptors are basically ‘sensors’ that reside within muscles, joints and ligaments. These respond to pressure, stretch and tension and are key in initiating what is known as the ‘stretch/reflex’. You will probably be familiar with the stretch/reflex as a mechanism in the everyday sporting context when trying to stretch a muscle beyond its sticking point – a point will be reached when the muscle will not want to stretch any further. This is the result of the stretch/reflex mechanism kicking in and trying to prevent the muscle from being stretched further.

Although not so readily apparent, the stretch/reflex also provides control over other functions eg your postural muscles, which maintain the balance of the body against gravity. This makes it a global as well as specific site muscle mechanism. An example of this is if you were holding a weight in your outstretched hand and then had more added; the stretch/reflex would attempt to make the adjustments necessary to allow you to continue to hold the added load by ‘tweaking’ all the supporting muscles and influencing your posture.

Injury can impair proprioception

Injury can reduce the effectiveness of an athlete’s proprioception, something that the athlete and coach may not be fully aware of even when rehabilitation seems complete. A team from the University of Pittsburgh looked at the role of the sensorimotor system as it relates to functional stability, joint injury and muscle fatigue of the shoulder and the restoration of functional stability after shoulder injury (1). They noted that to fully restore shoulder stability, deficits in mechanical stability, proprioception and neuromuscular control are needed.

Specificity and proprioception

The rule of training specificity states that the greatest sports improvement gains will be derived from the most sport specific exercises for that sport. Thus for example, a sprint athlete will get greater returns from plyometric training, in comparison with weight training. However, it is possible that even these specific training means may not fully develop proprioceptive ability.

Mark Alexander, writing for PP’s sister publication Sports Injury Bulletin, notes that a focus on speed and power exercises, with their emphasis on fast-twitch muscle fibre may in fact disrupt proprioceptive ability (3). He indicates that fast-twitch muscle fibre is less adept at monitoring and controlling muscle tension when compared with slow-twitch fibre because of the quicker speed of neural impulses being sent and interpreted through muscle spindles and spinal motor neurons.

Thus it is argued that balance type exercises need to be performed at slower paces to optimally enhance proprioception. These allow postural stabiliser muscles, with their greater predominance of slow-twitch muscle fibre, to supply enhanced movement control. An example of a stabilising muscle is the soleus muscle of the lower leg, while the other major calf muscle (the gastrocnemius) is the ‘fast-twitch fibre rich prime mover’.

Balance type drills are seen to improve not only proprioception, reducing potential injury, but also the ability of an athlete to express power. To explain this, think of a high jumper planting off their curved approach to leap dynamically skyward. The forces going through the athlete’s prime mover leg muscles need to be controlled by the stabilising muscles. The more effective these muscles are, the more effective the power output will be from the prime movers. This is akin to the fine-tuning of a race car’s suspension (which can be equated to the stabilising muscles), where small tweaks can greatly enhance the geometry of the car and therefore the speed produced by its prime mover – the engine.

To counter the thoughts of those who might still advocate faster movements for the development of proprioception, it is necessary to differentiate between proprioception and kinaesthetic awareness. Kinaesthetic awareness is about the ability of an athlete to perform a dynamic sporting skill, perhaps from an unstable position, and involves the conscious control of the body in space and time in order to affect a sports skill. This differs from the more automatic nature of proprioception responses.

The post The Importance of Proprioception Training appeared first on Swimming Science.